A lightweight CLI for scheduling LLM evaluations across multiple HPC clusters using SLURM job arrays and Singularity containers.
- Schedule evaluations on multiple models and tasks:
oellm schedule-eval - Collect results and check for missing evaluations:
oellm collect-results - Task groups for pre-defined evaluation suites with automatic dataset pre-downloading
- Multi-cluster support with auto-detection (Leonardo, LUMI, JURECA)
Prerequisites: Install uv
# Install the package
uv tool install -p 3.12 git+https://github.com/OpenEuroLLM/oellm-cli.git
# Run evaluations using a task group (recommended)
oellm schedule-eval \
--models "microsoft/DialoGPT-medium,EleutherAI/pythia-160m" \
--task_groups "open-sci-0.01"
# Or specify individual tasks
oellm schedule-eval \
--models "EleutherAI/pythia-160m" \
--tasks "hellaswag,mmlu" \
--n_shot 5This will automatically:
- Detect your current HPC cluster (Leonardo, LUMI, or JURECA)
- Download and cache the specified models
- Pre-download datasets for known tasks (see warning below)
- Generate and submit a SLURM job array with appropriate cluster-specific resources
Task groups are pre-defined evaluation suites in task-groups.yaml. Each group specifies tasks, their n-shot settings, and HuggingFace dataset mappings.
Available task groups:
open-sci-0.01- Standard benchmarks (COPA, MMLU, HellaSwag, ARC, etc.)belebele-eu-5-shot- Belebele European language tasksflores-200-eu-to-eng/flores-200-eng-to-eu- Translation tasksglobal-mmlu-eu- Global MMLU in EU languagesmgsm-eu- Multilingual GSM benchmarksgeneric-multilingual- XWinograd, XCOPA, XStoryClozeinclude- INCLUDE benchmarks
Super groups combine multiple task groups:
oellm-multilingual- All multilingual benchmarks combined
# Use a task group
oellm schedule-eval --models "model-name" --task_groups "open-sci-0.01"
# Use multiple task groups
oellm schedule-eval --models "model-name" --task_groups "belebele-eu-5-shot,global-mmlu-eu"
# Use a super group
oellm schedule-eval --models "model-name" --task_groups "oellm-multilingual"Datasets are only automatically pre-downloaded for tasks defined in task-groups.yaml.
If you use custom tasks via --tasks that are not in the task groups registry, the CLI will attempt to look them up but cannot guarantee the datasets will be cached. This may cause failures on compute nodes that don't have network access.
Recommendation: Use --task_groups when possible, or ensure your custom task datasets are already cached in $HF_HOME before scheduling.
After evaluations complete, collect results into a CSV:
# Basic collection
oellm collect-results /path/to/eval-output-dir
# Check for missing evaluations and create a CSV for re-running them
oellm collect-results /path/to/eval-output-dir --check --output_csv results.csvThe --check flag compares completed results against jobs.csv and outputs a results_missing.csv that can be used to re-schedule failed jobs:
oellm schedule-eval --eval_csv_path results_missing.csvFor full control, provide a CSV file with columns: model_path, task_path, n_shot, and optionally eval_suite:
oellm schedule-eval --eval_csv_path custom_evals.csvuv tool install -p 3.12 git+https://github.com/OpenEuroLLM/oellm-cli.gitUpdate to latest:
uv tool upgrade oellmDue to limited space in $HOME on JSC clusters, set these environment variables:
export UV_CACHE_DIR="/p/project1/<project>/$USER/.cache/uv-cache"
export UV_INSTALL_DIR="/p/project1/<project>/$USER/.local"
export UV_PYTHON_INSTALL_DIR="/p/project1/<project>/$USER/.local/share/uv/python"
export UV_TOOL_DIR="/p/project1/<project>/$USER/.cache/uv-tool-cache"We support: Leonardo, Lumi, and Jureca
oellm schedule-eval --help# Clone and install in dev mode
git clone https://github.com/OpenEuroLLM/oellm-cli.git
cd oellm-cli
uv sync --extra dev
# Run dataset validation tests
uv run pytest tests/test_datasets.py -v
# Download-only mode for testing
uv run oellm schedule-eval --models "EleutherAI/pythia-160m" --task_groups "open-sci-0.01" --download_onlyHuggingFace quota issues: Ensure you're logged in with HF_TOKEN and are part of the OpenEuroLLM organization.
Dataset download failures on compute nodes: Use --task_groups for automatic dataset caching, or pre-download datasets manually before scheduling.